
Ruby Under a
Microscope
Learning Ruby Internals Through Experiment
Pat Shaughnessy
Preview of one chapter - May 2012

Discussion/feedback:
http://patshaughnessy.net/ruby-under-a-microscope
@pat_shaughnessy

http://patshaughnessy.net/ruby-under-a-microscope
http://twitter.com/pat_shaughnessy

Table of Contents
Introduction .. 1

Why bother to study Ruby internals? .. 1
My approach in this book: theory and experiment... 2

How Hashes Scale From One To One Million Elements.. 3
Theory: Hash tables in Ruby .. 4
Experiment 1: Retrieving a value from hashes of varying sizes ... 9
Theory: How hash tables expand to accommodate more values.. 10
Experiment 2: Inserting one new element into hashes of varying sizes... 14
Theory: Why Hashes will be faster in Ruby 2.0 .. 18
Experiment 3: Inserting one new element into hashes of varying sizes, for Ruby 2.0 20
Theory: How Ruby implements hash functions.. 22
Experiment 4: Using objects as keys in a hash.. 26
Theory: How Ruby saves order information in hashes... 30
Experiment 5: Iterating over elements inserted into a Hash... 32
Alternate theories: Hashes in JRuby .. 33
Alternate theories: Hashes in Rubinius... 36
Conclusion.. 38
Appendix: Experiment Code .. 39

Introduction

Why bother to study Ruby internals?

Everyday you need to use your car to drive to work, drop your kids off at school, etc., but how often
have you ever thought about how your car actually works internally? When you stopped at a red light on
your way to the grocery store last weekend were you thinking about the theory and engineering behind
the internal combustion engine? No, of course not! All you need to know about your car is which pedal is
which, how to turn the steering wheel and a few other important details like shifting gears, turn indicator
lights, etc.

At first glance, studying how Ruby is implemented internally is no different: why bother to learn how the
language was implemented when all you need to do is use it? Who cares how the Ruby Array or Hash
objects work internally, for example; all I need to know is some basic usage - how to add something to
an array, how to get it back again later.

Well, in my opinion there are a few good reasons why you should take the time to study the internal
implementation of Ruby:

• You’ll become a better Ruby developer. By studying how Ruby works internally, you can
become more aware of how Matz and the rest of the Ruby core team intended the language to
be used. You’ll learn what works well, what performs fast - and what doesn’t. You’ll be a better
Ruby developer by using the language as it was intended to be used, and not just in the way
you prefer to use it.

• You can learn a lot about computer science. Beyond just appreciating the talent and vision of
the Ruby core team, you’ll be able to learn from their work. While implementing the Ruby
language the core team had to solve many of the same computer science problems that you
might have to solve in your job or open source project. This isn’t true of the car driving analogy,
obviously; learning about the mechanical and electrical engineering details of your car’s engine
won’t help you become a better driver.

• It’s fun! I find learning about the algorithms and data structures Ruby uses internally fascinating,
and I hope you will too.

Ruby Under a Microscope

1

My approach in this book: theory and experiment

“It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it
doesn't agree with experiment, it's wrong.” - Richard Feynman

In Ruby Under A Microscope I’m going to teach you how Ruby works internally. I’ll use a series of
simple, easy to understand diagrams that will show you what is happening on the inside when you run a
Ruby program. Like a physicist or chemist, I’ve developed a theory about how things actually work
based on many hours of research and study. I’ve done the hard work of reading and understanding
Ruby’s internal C source code so you don’t have to. My goal is that some of these diagrams come back
into your mind the next time you use a particular feature of Ruby.

But like any good scientist, I know that theory is worthless without some hard evidence to back it up.
Therefore after explaining some aspect of Ruby internals, some feature or behavior of the language, I’ll
perform an experiment to prove that my theory was correct. To do this I’ll use Ruby to test itself! I’ll run
some small test Ruby scripts and see whether they produce the expected output, whether they run as
fast or as slowly as I expect, whether Ruby actually behaves the way my theory says it should.

I assume you are a Ruby developer who uses the language every day and who is interested in learning
more about how the language works internally. However, I don’t expect you to be fluent in the C
programming language that Matz and the Ruby core team used to build the interpreter. I won’t walk
through the C code step by step, explaining all of the in’s and out’s of the C coding details. If you’re
interested in that sort of thing, then your best resource will be the Ruby Hacking Guide, originally written
in Japanese and partially translated into English.

For those people familiar with C, however, I will show a few vastly simplified snippets of C
code to give you a more concrete sense of what’s going on inside Ruby. I’ll also indicate
which MRI C source code I found the snippet in; this will make it easier for you to get
started studying the MRI C code yourself if you ever decide to. Like this paragraph, I’ll
display this information on a yellow background.

If you’re not interested in the C code details, just skip over these yellow sections.

Ruby Under a Microscope

2

http://rhg.rubyforge.org/

How Hashes Scale From One To One Million Elements
You probably know very well how to use the Hash object in your Ruby programs, but do you know what
the most remarkable and important feature of Ruby’s Hash object is? What makes the Hash object
interesting is not that it can save and lookup values using keys, but that it can do it quickly... regardless
of how many elements it has.

Here’s some data proving this is true:

This chart shows how long it takes Ruby 1.9 to search for and retrieve values from a hash, for hashes of
different sizes. The y-axis indicates how long it took my Ruby test code to retrieve 10,000 values from a
hash, in milliseconds. Along the x-axis I show the size of the hash using a logarithmic scale - in other
words the number of other keys Ruby had to search through to find the key I asked for. Clearly the Ruby
Hash object is very fast; on my laptop it can search for and find a key in hash 10,000 times in about
1.5ms. Doing the math, on average it takes Ruby only 0.15 microseconds to find a given key and return
the value.

Ruby Under a Microscope

3

But what’s really amazing about this is not just that Ruby is fast, it’s that Ruby is equally fast for a hash
containing a million keys as it is for a hash containing just one key! What’s remarkable about this chart is
that it’s more or less flat.

If you think about this for a minute, the Hash object is really a mini search engine: somehow Ruby can
take any key, search for it very quickly among possibly thousands or even millions of other keys, and
then return just the single value that corresponds to that key. Similarly, when you save a new key/value
pair into a hash Ruby first quickly determines whether a value for that key is already present and
overwrites it if there is one. How does it do this? Does Ruby build a search index of some kind?

In this chapter I’ll explain what a hash table is and how it uses a hash function to group data elements
into different bins, allowing Ruby later to search for them very, very quickly. I’ll also explain how the hash
tables expand to accommodate any number of keys and values. Along the way I’ll perform a series of
experiments to provide some data, some evidence that Ruby actually uses hash tables and hash
functions to implement the Hash object internally. Finally, I’ll explore how hashes save information about
order in the hash table - do I get them back in the same order that I inserted them?

Theory: Hash tables in Ruby

After studying the MRI C code Ruby uses to implement the Hash object,
I very quickly found that Ruby uses something called a “hash table” to
save the keys and values you save in any hash. Hash tables are a

commonly used, well known, old concept in computer science. They organize values into groups or
“bins” based on an integer value calculated from each value called a “hash.” Later when you need to
search for and find a value, by recalculating the hash value you can figure out which bin the value is
contained in, speeding up the search.

Here’s a high level diagram showing a single hash object and its hash table:

Ruby Under a Microscope

4

On the left is the “RHash” structure; this is short for “Ruby Hash.” All of the other important object types
used inside of Ruby are represented by similar structures called “RFile,” “RArray,” “RValue,” etc. Each of
these structures, including RHash, contains a set of internal, system values about that object that Ruby
needs to keep track of.

On the right, I show the hash table used by this hash, represented by the “st_table” structure. This C
structure contains the basic information about the hash table, such as the number of entries saved in the
table, the number of bins and a pointer to the bins. Each RHash structure contains a pointer to a
corresponding st_table structure. Finally, I show some empty bins on the lower right. Ruby 1.8 and Ruby
1.9 initially create 11 bins for a new, empty hash.

The best way to understand how a hash table works is by stepping through an example. Let’s suppose I
add a new key/value to a hash called “my_hash:”

my_hash[:key] = "value"

While executing this line of code, Ruby will create a new structure called an “st_table_entry” and will
save it into the hash table for “my_hash:”

Ruby Under a Microscope

5

Here you can see Ruby saved the new key/value pair under the third bucket, #2. Ruby did this by taking
the given key, the symbol “:key” in this example, and passing it to an internal hash function that returns
a pseudo-random integer:

some_value = internal_hash_function(:key)

Next, Ruby takes the hash value, “some_value” in this example, and calculates the modulus by the
number of bins… i.e. the remainder after dividing by the number of bins:

some_value % 11 = 2

In this diagram I imagine that the actual hash value for “:key” divided by 11 leaves a remainder of 2.
Later in this chapter I’ll explore the hash functions that Ruby actually uses in more detail.

Now let’s add a second element to the hash:

my_hash[:key2] = "value2"

And this time let’s imagine that the hash value of “:key2” divided by 11 yields a remainder of 5:

Ruby Under a Microscope

6

internal_hash_function(:key2) % 11 = 5

Now you can see Ruby places a second “st_table_entry” structure under bin #5, the sixth bin:

The benefit of using a hash table comes later, when you ask Ruby to retrieve the value for a given key:

puts my_hash[:key]
=> "value"

If Ruby had saved all of the keys and values in an array or linked list, then it would have to iterate over all
the elements in that array of list, looking for :key. This might take a very long time, depending on how
many elements there were. But using a hash table Ruby can jump straight to the key it needs to find by
recalculating the hash value for that key. It simply calls the hash function again:

Ruby Under a Microscope

7

some_value = internal_hash_function(:key)

… redivides the hash value by the number of bins and obtaining the remainder, the modulus:

some_value % 11 = 2

… and now Ruby knows to look in bin #2 for the entry with a key of :key. In a similar way, Ruby can later
find the value for :key2 by repeating the same hash calculation:

internal_hash_function(:key2) % 11 = 5

Believe it or not, the C library used by Ruby to implement hash tables was originally
written back in the 1980’s by Peter Moore from the University of California at Berkeley,
and later modified by the Ruby core team. You can find Peter Moore’s hash table code in
the C code files “st.c” and “include/ruby/st.h”. All of the function and structure names use
the naming convention “st_" in Peter’s hash table code.

Peter Moore’s hash table code plays a very important and central role in Ruby internals.
It’s used not only by the Hash object, but in many other places also, for example to keep
track of what methods are defined in each Ruby object class or module. In other words,
Ruby uses Peter Moore’s hash table code to track its own internal data, and not only your
data that you save in Hash objects.

Meanwhile, the definition of the “RHash” structure that represents every Ruby Hash object
can be found in the include/ruby/ruby.h file. Along with RHash, here you’ll find all of the
other primary object structures used in the Ruby source code: RString, RArray, RValue,
etc.

Ruby Under a Microscope

8

Experiment 1: Retrieving a value from hashes of
varying sizes

My first experiment will create hashes of wildly different sizes, from 1
element to 1 million elements and then measure how long it takes to find
and return a value from each of these hashes. You can find my complete
test code script in the appendix or on Github in case you want try this

yourself. For now, here are the important bits of the test code. First, I create hashes of different sizes,
based on powers of two, by running this code for different values of “exponent”:

size = 2**exponent
hash = {}
(1..size).each dodo |n|

index = rand
hash[index] = rand

endend

Here both the keys and values are random floating values. Then I measure how long it takes to find one
of the keys, the “target_key”, 10,000 times using the benchmark library:

Benchmark.bm dodo |bench|
bench.report("retrieving an element from a hash with #{size} elements 10000 times") dodo

10000.times dodo
val = hash[target_key]

endend
endend

endend

Ruby Under a Microscope

9

https://github.com/patshaughnessy/ruby-under-a-microscope/tree/master/hashes

The results: small or very large Ruby hashes are equally fast!

I already showed this chart above; the results are remarkable: using a hash table internally, Ruby is able
to find and return value from a hash containing over a million elements just as fast as it takes to return
one from a small hash:

Clearly the hash function Ruby uses is very fast, and once Ruby identifies the bin containing the target
key, it is able to very quickly find the corresponding value and return it. As I said above, what’s
remarkable about this is that the values in this chart are more or less flat.

Theory: How hash tables expand to
accommodate more values

You might be thinking ahead at this point, asking yourself: If there
are millions of st_table_entry structures, why does distributing
them among 11 bins help Ruby search quickly? Even if the hash
function is fast, and even if Ruby distributes the values evenly

Ruby Under a Microscope

10

among the 11 bins in the hash table, Ruby will still have to search among almost 100,000 elements in
each bin to find the target key if there are a million elements overall.

Something else must be going on here. It seems to me that Ruby must add more bins to the hash table
as more and more elements are added. Let’s take another look at how Ruby’s internal hash table code
works. Continuing with the example from above… suppose I keep adding more and more elements to
my hash:

my_hash[:key3] = "value3"
my_hash[:key4] = "value4"
my_hash[:key5] = "value5"
my_hash[:key6] = "value6"
... etc ...

As I add more and more elements, Ruby will continue to create more st_table_entry structures and add
them to different bins, depending on the modulus of the hash value for each key:

Ruby uses a linked list to keep track of the entries in each bin: each st_table_entry structure contains a
pointer to the next entry in the same bin. As you add more entries to the hash, the linked list for each bin
gets longer and longer.

To keep these linked lists from getting out of control, Ruby measures something called the “density” or
the average number of entries per bin. In my diagram above, you can see that the average number of

Ruby Under a Microscope

11

entries per bin has increased to about 4. What this means is that the hash value modulus 11 has started
to return repeated values for different keys and hash values. Therefore, when searching for a target key,
Ruby might have to iterate through a small list, after calculating the hash value and finding which bin
contains the desired entry.

Once the density exceeds 5, a constant value in the MRI C source code, Ruby will allocate more bins
and then “rehash”, or redistribute, the existing entries among the new bin set. For example, if I keep
adding more key/value pairs, after a while Ruby will discard the array of 11 bins, allocate an array of 19
bins, and then rehash all the existing entries:

Now in this diagram the bin density has dropped to about 3.

By monitoring the bin density in this way, Ruby is able to guarantee that the linked lists remain short,
and that retrieving a hash element is always fast - now after calculating the hash value Ruby just needs
to step through 1 or 2 elements to find the target key.

You can find the “rehash” function - the code that loops through the st_table_entry
structures and recalculates which bin to put the entry into - in the st.c source file at
around line 316 in Ruby 1.8.7:

static void
rehash(table)

register st_table *table;
{

register st_table_entry *ptr, *next, **new_bins;
int i, old_num_bins = table->num_bins, new_num_bins;

Ruby Under a Microscope

12

unsigned int hash_val;

new_num_bins = new_size(old_num_bins+1);
new_bins = (st_table_entry**)Calloc(new_num_bins, sizeofsizeof(st_table_entry*));

forfor(i = 0; i < old_num_bins; i++) {
ptr = table->bins[i];
whilewhile (ptr != 0) {

next = ptr->next;
hash_val = ptr->hash % new_num_bins;
ptr->next = new_bins[hash_val];
new_bins[hash_val] = ptr;
ptr = next;

}
}
free(table->bins);
table->num_bins = new_num_bins;
table->bins = new_bins;

}

The “new_size” method call here returns the new bin count, for example 19. Once Ruby
has the new bin count, it allocates the new bins and then iterates over all the existing
st_table_entry structures - all the key/value pairs in the hash. For each st_table_entry
Ruby recalculates the bin position using the same modulus formula: hash_val = ptr->hash
% new_num_bins. Then it saves each entry in the linked list for that new bin. Finally Ruby
updates the st_table structure and frees the old bins.

In Ruby 1.9 and Ruby 2.0 the rehash function is implemented somewhat differently, but
works essentially the same way.

Ruby Under a Microscope

13

Experiment 2: Inserting one new element into hashes
of varying sizes

One way to test whether this rehashing or redistribution of entries really
occurs is to measure the amount of time Ruby takes to save one new
element into an existing hash of different sizes. As I add more and more
elements to the same hash, at some point I should see some evidence that

Ruby is taking extra time to rehash the elements.

I’ll do this by creating 10,000 hashes, all of the same size, indicated by the variable “size”:

hashes = []
10000.times dodo

hash = {}
(1..size).each dodo |x|

hash[rand] = rand
endend
hashes << hash

endend

Once these are all setup, I can measure how long it takes to add one more element to each hash -
element number size+1:

Benchmark.bm dodo |bench|
bench.report("adding element number #{size+1}") dodo

10000.times dodo |n|
hashes[n][size] = rand

endend
endend

endend

The results: inserting the 67th element takes much more time!

What I found was surprising! Here’s the data for Ruby 1.8:

Ruby Under a Microscope

14

Interpreting these data values from left to right:

• It takes about 9ms to insert the first element into an empty hash (10000 times).
• Then it takes about 7ms to insert the second element into a hash containing one value (10000

times).
• Then as the hash size increases from 2, 3, up to about 60 or 65 the amount of time required to

insert a new element slowly increases.
• Finally we see it takes around 11ms or 12ms to insert each new key/value pair into a hash that

contains 64, 65 or 66 elements (10000 times).
• Then we see a huge spike! Inserting the 67th key/value pair takes over twice as much time:

about 26ms instead of 11ms for 10000 hashes!
• Finally after inserting the 67th element, the time required to insert additional elements drops to

about 10ms or 11ms, and then slowly increases again from there.

Ruby Under a Microscope

15

What’s going on here? Well, the extra time required to insert that 67th key/value pair is spent by Ruby
reallocating the bin array from 11 bins to 19 bins, and then reassigning the st_table_entry structures to
the new bin array.

Here’s the same graph for Ruby 1.9 - you can see this time the bin density threshold is different. Instead
of taking extra time to reallocate the elements into bins on the 67th insert, Ruby 1.9 does it when the
57th element is inserted. Later you can see Ruby 1.9 performs another reallocation after the 97th
element is inserted.

If you’re wondering where these magic numbers come from, 57, 97, etc., then take a look
at the top of the “st.c” code file for your version of Ruby. You should find a list of prime
numbers like this:

Ruby Under a Microscope

16

/*
Table of prime numbers 2^n+a, 2<=n<=30.
*/
static const unsigned int primes[] = {

8 + 3,
16 + 3,
32 + 5,
64 + 3,
128 + 3,
256 + 27,
512 + 9,

...etc...

This C array lists some prime numbers that occur near powers of two. Peter Moore’s hash
table code uses this table to decide how many bins to use in the hash table. For example,
the first prime number in the list above is 11, which is why Ruby hash tables start with 11
bins. Later as the number of elements increases the number of bins is increased to 19,
and later still to 37, etc.

Ruby always sets the number of hash table bins to be a prime number to make it more
likely that the hash values will be evenly distributed among the bins, after calculating the
modulus - after dividing by the prime number and using the remainder. Mathematically,
prime numbers help here since they are less likely to share a common factor with the hash
value integers, in case a poor hash function often returned values that were not entirely
random. If the hash values and bin counts shared a factor, or if the hash values were a
multiple of the bin count, then the modulus might always be the same… leading to table
entries being unevenly distributed among the bins.

Elsewhere in the st.c file, you should be able to find this C constant:

#define ST_DEFAULT_MAX_DENSITY 5

Ruby Under a Microscope

17

… which defines the maximum allowed density, or average number of elements per bin.
Finally, you should also be able to find the code that decides when to perform a bin
reallocation by searching for where that ST_DEFAULT_MAX_DENSITY constant is used in
st.c. For Ruby 1.8 you’ll find this code:

ifif (table->num_entries/(table->num_bins) > ST_DEFAULT_MAX_DENSITY) {
rehash(table);

So Ruby 1.8 rehashes from 11 to 19 bins when the num_entries/11 is greater than 5… i.e.
when it equals 66… when you insert the 67th element.

For Ruby 1.9 and Ruby 2.0 you’ll find this code instead:

ifif ((table)->num_entries > ST_DEFAULT_MAX_DENSITY * (table)->num_bins) {
rehash(table);

You can see Ruby 1.9 rehashes for the first time when num_entries is greater than 5*11, or
when you insert the 57th element.

Theory: Why Hashes will be faster in Ruby 2.0

Above I showed graphs for Ruby 1.8 and Ruby 1.9 - but what about Ruby 2.0?
Does it work any differently? Does it reallocate bins in the same way? While
reading the Ruby 2.0 source code I noticed a lot of code changes related to
allocating bins, which made me suspect that Hashes will work even faster in

Ruby 2.0. Let’s take a look….

Hashes in Ruby 2.0 will use somewhat different data structures to save keys and values in a hash table.
Instead of allocating bins and then assigning the key/value entries (st_table_entry structures) to the bins,
Ruby 2.0 will instead save the key/value data right inside the memory normally allocated for the bins.
Here’s what this looks like:

Ruby Under a Microscope

18

In the MRI source code these entries are referred to as “packed.” Here you can see that the keys and
values are saved right inside the bins on the lower right, and that the st_table has a new value in it called
“entries_packed.” This value is set to true whenever the keys and values are saved like this. When this is
false, it indicates that the data elements are saved in st_table_entry structures as usual.

But wait a minute! If there are no buckets, then this isn’t a hash table at all, is it? That’s right: in Ruby 2.0
the Hash object is actually implemented as an array internally, and not as a hash table!

However, this is only true for small hashes - hashes whose elements all fit into the memory space
normally used for the bin array. Once a hash’s elements no longer fit into the bin array memory, the key/
value data will be copied back into new st_table_entry structures and assigned to the hash table bins as
usual.

The optimization here really isn’t about saving memory as much as time/speed. In Ruby 2.0 the Ruby
core team has decided that for small hashes it’s actually faster just to save the keys and values in an
array, and to look for the target key by simply iterating through the array. In this way, Ruby avoids calling
the hash function entirely for the target key, which should be fast, but could possibly be slow if the key
was a large string or array. Ruby also saves time by avoiding the need to create and setup the
st_table_entry structures when you insert elements.

Ruby Under a Microscope

19

Experiment 3: Inserting one new element into hashes
of varying sizes, for Ruby 2.0

For this test I’ll re-run the same code I used in Experiment #2, but this time
using “ruby-head” build; the code from the master branch intended for an
upcoming release of Ruby 2.0. And I’ll focus on the data for smaller hash
sizes, to see if I can find any evidence of this optimization.

The results: inserting the first six elements is faster!

Here are the results:

Again here the y-axis shows the amount of time required to insert one new element into an existing
hash. Along the x-axis I measure this time for hashes of different sizes, starting with zero (an empty
hash). Here’s how I interpret the results:

Here’s how I interpret the results:

Ruby Under a Microscope

20

• It takes about 6ms to insert the first element, 10,000 times.
• Then, it takes only about 3ms to insert the second element, 10,000 times.
• After that, it takes Ruby 2.0 between about 4ms or 5ms to insert elements number 3, 4, 5 and 6.
• Then we see a spike: to insert the seventh element (10,000 times) Ruby requires about 12ms.
• Finally, after that, inserting new elements takes on the average about 6ms to 7ms.

What does this mean?

• Inserting the first element takes a bit longer, but in Ruby 2.0 the bin array is actually not created
at all for empty hashes. You can view this as another optimization: empty hashes have an
RHash structure and an st_table structure, but no bin array at all. This allows Ruby to create
new, empty hashes faster at the price of requiring a bit more time to insert the first element.

• Then inserting elements up to #6 is very fast, since they are saved directly into the bin array,
and Ruby 2.0 doesn’t need to allocate new st_table_entry structures or call the hash function at
all.

• But only 6 elements fit into the array. Therefore when you insert the seventh element Ruby 2.0
has to create 7 st_table_entry structures, call the hash function for each key and assign them to
the bins. In other words, Ruby 2.0 has to setup the hash table for the first time when you insert
the seventh element!

• After that things work the same way they do for Ruby 1.9.

If you’re interested in learning more about how Ruby 2.0’s new hash-as-array optimization
works, then search for the word “packed” in the st.c file. For example, in Ruby 2.0 the
st_table structure contains a value called “entries_packed” which indicates whether or not
the hash is really an array. There is also a function called “add_packed_direct” which
inserts a new key/value into the hash array (and not in the hash table). Finally if you search
for a constant called MAX_PACKED_HASH you’ll find the calculation that determines that
6 hash elements should be saved as an array, while 7 or more hash elements should be
saved in a hash table.

One final note here: this might seem like an unnecessary and unimportant optimization. After all, once
you have 7 elements in a hash the optimization no longer applies. But think about how often Ruby
developers use hashes to save options for method calls and in other ways that only require a few key/

Ruby Under a Microscope

21

value pairs be stored in the hash. Small hashes are used quite frequently in Ruby applications - most
hashes are small hashes - and therefore this optimization will have a big impact.

Theory: How Ruby implements hash
functions

Now let’s take a closer look at the actual hash function
Ruby uses to assign keys and values to bins in hash
tables. If you think about it, this function is central to the

way the Hash object is implemented - if this function works well then Ruby hashes will be fast, but a
poor hash function would in theory cause severe performance problems. And not only that, as I
mentioned above, Ruby uses hash tables internally to store its own information, and not only the data
values you save in hash objects. Clearly having a good hash function is very important!

First let’s review again how Ruby uses hash values. Remember that when you save a new element - a
new key/value pair - in a hash, Ruby assigns it to a bin inside the internal hash table used by that hash
object:

Ruby Under a Microscope

22

Again, the way this works is that Ruby calculates the modulus of the key’s hash value by the number of
bins:

bin index = internal_hash_function(key) % bin count

Or in this example:

2 = hash(:key) % 11

The reason this works well for Ruby is that Ruby’s hash values are more or less random integers for any
given input data. You can get a feel for how Ruby’s hash function works by calling the “hash” method for
any object like this:

$ irb
ruby-1.9.3-p0 :001 > "abc".hash
=> 3277525029751053763

ruby-1.9.3-p0 :002 > "abd".hash
=> 234577060685640459

ruby-1.9.3-p0 :003 > 1.hash
=> -3466223919964109258

ruby-1.9.3-p0 :004 > 2.hash
=> -2297524640777648528

Here even similar values have very different hash values. Note that if I call “hash” again I always get the
same integer value for the same input data:

ruby-1.9.3-p0 :001 > "abc".hash
=> 3277525029751053763

ruby-1.9.3-p0 :002 > "abd".hash
=> 234577060685640459

Here’s how Ruby’s hash function actually works for most Ruby objects:

Ruby Under a Microscope

23

• When you call “hash” Ruby finds the default implementation in the “Object” class. You, of
course, are free to override this if you really want to.

• The C code used by the Object class’s implementation of the hash method gets the C pointer
value for the target object - i.e. the actual memory address of that object’s RValue structure.
This is essentially a unique id for that object.

• Ruby then passes it through a complex C function - the hash function - that mixes up and
scrambles the bits in the value, producing a pseudo-random integer in a repeatable way.

For string and arrays it works differently. In this case, Ruby actually iterates through all of the characters
in the string or elements in the array and calculates a cumulative hash value; this guarantees that the
hash value will always be the same for any instance of a string or array, and will always change if any of
the values in that string or array change.

Finally, integers and symbols are another special case - for them Ruby just passes their values right to
the hash function.

Ruby 1.9 and 2.0 actually use something called the “MurmurHash” hash function, which
was invented by Austin Appleby in 2008. The name “Murmur” comes from the machine
language operations used in the algorithm: “multiply” and “rotate.” If you’re interested in
the details of how the Murmur algorithm actually works, you can find the C code for it in
the st.c Ruby source code file, around line 1028. Or you can read Austin’s web page on
Murmur: http://sites.google.com/site/murmurhash/.

Also, Ruby 1.9 and Ruby 2.0 initialize MurmurHash using a random seed value which is
reinitialized each time you restart Ruby. This means that if you stop and restart Ruby you’ll
get different hash values for the same input data. It also means if you try this yourself
you’ll get different values than I did above. However, the hash values will always be the
same within the same Ruby process.

Since hash values are pseudo-random numbers, once Ruby divides them by the bin count, e.g. 11, the
remainder values left over (the modulus values) will be a random number between 0 and 10. This means
that the st_table_entry structures will be evenly distributed over the available bins as they are saved in
the hash table. Evenly distributing the entries ensures that Ruby will be able to quickly search for and

Ruby Under a Microscope

24

http://sites.google.com/site/murmurhash/

find any given key, since the number of entries per bin will always be small. (On the average it will always
be less than the maximum density of 5, which I showed earlier.)

But imagine if Ruby’s hash function didn’t return random integers - imagine if instead it returned the
same integer for every input data value. What would happen?

In that case, every time you added any key/value to a hash it would always be assigned to the same bin.
Then Ruby would end up with all of the entries in a single, long list under that one bin, and with no
entries in any other bin:

Now when you tried to retrieve some value from this hash, Ruby would have to look through this long
list, one element at a time, trying to find the requested key. In this scenario loading a value from a Ruby
hash would be very, very slow.

Ruby Under a Microscope

25

Experiment 4: Using objects as keys in a hash

Now I’m going to prove this is the case - and illustrate just how important
Ruby’s hash function really is - by using objects with a poor hash function
as keys in a hash. Let’s repeat Experiment 1 and create many hashes that
have different numbers of elements, from 1 to a million:

size = 2**exponent
hash = {}
(1..size).each dodo |n|

index = rand
hash[index] = rand

endend

But instead of calling “rand” to calculate a random key values, this time I’ll create a new, custom object
class called “KeyObject” and use instances of that class as my key values:

classclass KeyObject
endend

size = 2**exponent
hash = {}
(1..size).each dodo |n|

index = KeyObject.new
hash[index] = rand

endend

This works essentially the same way as Experiment 1 did, except that Ruby will have to calculate the
hash value for each of these “KeyObject” objects instead of the random floating point values I used
earlier.

After re-running the test with this KeyObject class, I’ll then proceed to change the KeyObject class and
override the “hash” method, like this:

Ruby Under a Microscope

26

classclass KeyObject
defdef hashhash

4
endend

endend

I’ve purposefully written a very poor hash function - instead of returning a pseudo-random integer, this
hash function always returns the integer 4, regardless of which KeyObject object instance you call it on.
Now Ruby will always get 4 when it calculates the hash value, and it will have to assign all of the hash
elements to bin #4 in the internal hash table, like in the diagram above. Let’s see what happens….

The results: a poor hash function has a dramatic effect on performance!

Running the test with an empty “KeyObject” class:

classclass KeyObject
endend

… I get results similar to Experiment 1:

Ruby Under a Microscope

27

Using Ruby 1.9 I again see that Ruby takes about 1.5ms to 2ms to retrieve 10,000 elements from a hash,
this time using instances of the KeyObject class as the keys.

Now let’s run the same code, but this time with the poor hash function in KeyObject:

classclass KeyObject
defdef hashhash

4
endend

endend

Here are the results:

Ruby Under a Microscope

28

Wow - very different! Pay close attention to the scale of the graph. On the y-axis I show milliseconds and
on the x-axis again the number of elements in the hash, shown on a logarithmic scale. But this time
notice that I have 1000s of milliseconds - or actual seconds - on the y-axis! With 1 or a small number of
elements, I can retrieve the 10,000 values very quickly - so quickly that the time is too small to appear on
this graph. In fact it takes about the same 1.5ms time.

But when the number of elements increases past 100 and especially 1000, the time required to load the
10,000 values increases linearly with the hash size. For a hash containing about 10,000 elements it takes
over 1.6 full seconds to load the 10,000 values. If I continue the test with larger hashes it would take
minutes or even hours to load the values.

Again what’s happening here is that all of the hash elements are saved into the same bin, forcing Ruby
to search through the list one key at a time.

Ruby Under a Microscope

29

Theory: How Ruby saves order information in
hashes

There’s one subtle but interesting detail about my diagrams so far you
might not have noticed. If you look, there’s no information saved in the

hash table about what order I saved the keys and values in. That is, looking at the hash table diagrams,
how would Ruby know whether I inserted :key first, or :key2?

Aside from the Ruby 2.0 hash as array optimization, one other major code change I noticed between the
different versions of MRI Ruby had to do with saving order information in the hash table. Investigating a
bit, I began to learn that Ruby 1.8 and Ruby 1.9 behave differently with regard to order and iterating over
hash elements. I discovered that in Ruby 1.9 and 2.0 the st_table structure contains two additional data
values called “head” and “tail:”

The head and tail values are pointers to st_table_entry structures, forming a linked list that tracks the
order entries were saved into the hash. In my previous example, the linked list would look like this:

Ruby Under a Microscope

30

The dashed lines indicate the linked list. When the first value is added to the hash table, the “head” and
“tail” pointers are set to point to it. Then when the second value is added, a linked list is formed from the
head to the first value and from the first to the second value. The tail pointer is then set to the second
value. I’m not showing them here, but there are also new pointers added to the st_table_entry structure
to support the linked list as well.

Why do all of this extra work? The linked list allows Ruby 1.9 and Ruby 2.0 to record the order you
added values to the hash, and then to use that information to return the values back to you in the same
order. That is, if I call one of the iterator related methods, such as “each” or “each_value” or “each_key,”
etc., Ruby 1.9 and Ruby 2.0 will look for the “head” pointer in the st_table structure, and then start
iterating through the st_table_entry structures using the linked list pointers.

Ruby Under a Microscope

31

Ruby 1.8, however, will simply iterate over the bins in the bin array, and then through the st_table_entry
structures in the order it happens to find them in the hash table. While this order is not random - it has to
do with the hash value of each key - since the hash values appear to be random values the order you get
the elements back while iterating will appear to be random also.

Experiment 5: Iterating over elements inserted into a
Hash

For this test I just need to create an empty hash:

hash = {}

… and then insert two values into it:

hash['one'] = "This should be returned first"
hash['two'] = "This should be returned second"

… and finally if I iterate over the values I can see what order they are returned in:

hash.each_value { |val| puts val }

First, running the test using Ruby 1.8:

$ ruby -v
ruby 1.8.7 (2011-06-30 patchlevel 352) [i686-darwin11.2.0]
$ ruby experiment5.rb
This should be returned second
This should be returned first

You can see here that actually these two elements are returned in the wrong order: first the value for
:two is returned and then the value for :one. It turns out for Ruby 1.8 the hash values for these two keys,
'one' and 'two', happen to occur in the wrong order.

Ruby Under a Microscope

32

Now let’s re-run the same code for Ruby 1.9 (or Ruby 2.0):

$ ruby -v
ruby 1.9.3p0 (2011-10-30 revision 33570) [x86_64-darwin11.2.0]
$ ruby experiment5.rb
This should be returned first
This should be returned second

This time I get the values in the proper order.

Remember that for the Hash object iterating through the keys in order is a secondary feature. The most
important feature of a Hash is to be able to quickly retrieve a value for any given key. As I discussed
above, this is done by calculating the hash value and the modulus by the number of bins, and not by
using the head/tail linked list. Ruby only uses the linked list when you call “each” or one of the other
iterator methods. Ruby also uses the list when executing the “shift” method.

Alternate theories: Hashes in JRuby

It turns out JRuby implements hashes more or less the same way
MRI Ruby does. Of course, the JRuby source code is written in
Java and not C, but the JRuby team chose to use the same
underlying hash table algorithm that MRI uses. Since Java is an
object oriented language, unlike C, JRuby is able to use actual

Java objects to represent the hash table and hash table entries, instead of memory structures. Here’s
what a hash table looks like internally inside of a JRuby process:

Ruby Under a Microscope

33

Here instead of the C RHash and st_table memory structures, we have a Java object called “RubyHash”.
And instead of the bin array and st_table_entry structures we have an array of Java objects called
“RubyHashEntry.” The RubyHash object contains an instance variable called “size” which keeps track of
the number of elements in the hash, and another instance variable called “table”, which is the
RubyHashEntry array.

JRuby allocates 11 empty RubyHashEntry objects when you create a new hash; these form the hash
table bins. Then later as you insert elements into the hash, JRuby fills in these objects them with keys
and values. Inserting and retrieving elements works the same was as in MRI: JRuby uses the same
formula to divide the hash value of the key by the bin count, and uses the modulus to find the proper
bin:

bin index = internal_hash_function(key) % bin count

As you add more and more elements to the hash, JRuby forms a linked list of RubyHashEntry objects as
necessary when two keys fall into the same bin - just like MRI:

Ruby Under a Microscope

34

And JRuby also tracks the density of entries - the average number of RubyHashEntry objects per bin -
and allocates a larger table of RubyHashEntry objects as necessary, rehashing the entries.

If you’re interested, you can find the Java code JRuby uses to implement hashes in the
src/org/jruby/RubyHash.java source code file. I found it easier to understand than the
original C code from MRI, mostly because in general Java is a bit more readable and
easier to understand than C is, and because it’s object oriented. The JRuby team was
able to separate the hash code into different Java classes, primarily RubyHash and
RubyHashEntry.

The JRuby team even used the same identifier names as MRI in some cases; for example
you’ll find the same “ST_DEFAULT_MAX_DENSITY” value of 5, and JRuby uses the same
table of prime numbers that MRI does: 11, 19, 37, etc., that fall near powers of two. This
means that JRuby will show the same performance pattern MRI does for reallocating bins
and redistributing the entries.

Ruby Under a Microscope

35

Alternate theories: Hashes in Rubinius

At a high level, Rubinius uses the same hash table algorithm as MRI and JRuby -
but using Ruby instead of C or Java. This means the Rubinius source code is
about 10 times easier to understand than either the MRI or JRuby code, and is a
great way to learn more about hash tables if you’re interested in getting your

hands dirty without learning C or Java.

Here’s how hashes look inside of Rubinius:

Since this is just plain Ruby, in Rubinius your Ruby objects are actually implemented with a real Ruby
class called “Hash”. You’ll see it has a few integer attributes, such as @size, @capacity and
@max_entries, and also an instance variable called @entries which is the bin array that actually contains
the hash data. Rubinius implements the bin array using a Ruby class called “Rubinius::Tuple”, which is a
simple storage class similar to an array. Rubinius saves each hash element inside a Ruby object called
“Bucket”, saved inside of the @entries Rubinius::Tuple array.

One difference you’ll see in the Rubinius hash table implementation is that it uses simple powers of two
to decide how many hash bins to create, instead of prime numbers. Initially Rubinius uses 16 Bucket
objects. Whenever Rubinius needs to allocate more bins, it just doubles the size of the bin array -
“@entries” in the code above. While theoretically this is less ideal than using prime numbers, it simplifies
the code substantially and also allows Rubinius to use bitwise arithmetic to calculate the bin index,
instead of having to divide and take the remainder/modulus.

Ruby Under a Microscope

36

You’ll find the Rubinius hash implementation in source code files called kernel/common/
hash18.rb and kernel/common/hash19.rb - Rubinius has entirely different implementations
of hashes depending on whether you start in Ruby 1.8 or Ruby 1.9 compatibility mode.
Here’s a snippet from hash18.rb, showing how Rubinius finds a value given a key:

defdef [][](key)
ifif item = find_item(key)

item.value
elseelse

default key
endend

endend

... etc ...

Searches for an item matching +key+. Returns the item
if found. Otherwise returns +nil+.
defdef find_itemfind_item(key)

key_hash = key.hash

item = @entries[key_index(key_hash)]
whilewhile item

ifif item.match? key, key_hash
returnreturn item

endend
item = item.link

endend
endend

... etc ...

Calculates the +@entries+ slot given a key_hash value.

Ruby Under a Microscope

37

defdef key_indexkey_index(key_hash)
key_hash & @mask

endend

You can see the key_index method uses bitwise arithmetic to calculate the bin index,
since the bin count will always be a power of two for Rubinius, and not a prime number.
Trust me, this code is much easier to understand than the corresponding C code in MRI
Ruby.

Conclusion

The more I look at the Ruby Hash object, the more I’m impressed. On the surface it seems to be very
obvious and straightforward: you insert values and keys, and later you can get them back again. What
could be simpler? But looking into the details of how Ruby implements hashes lead me to discover a
great deal of knowledge:

• First, I learned about hash tables and hash functions: what they are and how they work.
• Then, I realized how scalable Ruby hashes really are. I can now write Ruby code that saves a

large data set into a hash, while being confident that I will later be able to quickly and efficiently
search for any given object.

• I saw how the Ruby core team has improved - and is still improving - how the Ruby Hash object
works. I can’t wait to see what they come up next!

• But most importantly, it was a lot of fun!

Ruby Under a Microscope

38

Appendix - Experiment Code

Experiment 1

Find this code on Github.

require 'benchmark'
ITERATIONS = 10000
(1..20).each dodo |exponent|

size = 2**exponent
hash = {}
target_index = 0
(1..size).each dodo |n|

index = rand
hash[index] = rand
target_index = index ifif n == size/2

endend

GC.start
Benchmark.bm dodo |bench|

bench.report("retrieving an element from a hash with #{size} elements #{ITERATIONS} times") dodo
ITERATIONS.times dodo |n|

val = hash[target_index]
endend

endend
endend

endend

Ruby Under a Microscope

39

https://github.com/patshaughnessy/ruby-under-a-microscope/blob/master/hashes/experiment1.rb

Experiments 2 and 3

Find this code on Github.

ITERATIONS = 10000
(0..99).each dodo |size|

puts "Creating #{ITERATIONS} hashes with #{size} elements."
hashes = []
ITERATIONS.times dodo

hash = {}
(1..size).each dodo |x|

hash[rand] = rand
endend
hashes << hash

endend

require 'benchmark'
GC.start
Benchmark.bm dodo |bench|

bench.report("adding element number #{size+1}") dodo
ITERATIONS.times dodo |n|

hashes[n][size] = rand
endend

endend
endend

endend

Ruby Under a Microscope

40

https://github.com/patshaughnessy/ruby-under-a-microscope/blob/master/hashes/experiment2.rb

Experiment 4

Find this code on Github.

require 'benchmark'
ITERATIONS = 10000

classclass KeyObject
defdef hashhash

4
endend

endend

(1..20).each dodo |exponent|

size = 2**exponent
hash = {}
target_index = 0
(1..size).each dodo |n|

hash_index = KeyObject.new
hash[hash_index] = rand
target_index = hash_index ifif n == size/2

endend

GC.start
Benchmark.bm dodo |bench|

bench.report("retrieving an element from a hash with #{size} elements #{ITERATIONS} times") dodo
ITERATIONS.times dodo |n|

val = hash[target_index]
endend

endend
endend

endend

Ruby Under a Microscope

41

https://github.com/patshaughnessy/ruby-under-a-microscope/blob/master/hashes/experiment4.rb

	Table of Contents
	Introduction
	Why bother to study Ruby internals?
	My approach in this book: theory and experiment

	How Hashes Scale From One To One Million Elements
	Theory: Hash tables in Ruby
	Experiment 1: Retrieving a value from hashes of varying sizes
	The results: small or very large Ruby hashes are equally fast!

	Theory: How hash tables expand to accommodate more values
	Experiment 2: Inserting one new element into hashes of varying sizes
	The results: inserting the 67th element takes much more time!

	Theory: Why Hashes will be faster in Ruby 2.0
	Experiment 3: Inserting one new element into hashes of varying sizes, for Ruby 2.0
	The results: inserting the first six elements is faster!

	Theory: How Ruby implements hash functions
	Experiment 4: Using objects as keys in a hash
	The results: a poor hash function has a dramatic effect on performance!

	Theory: How Ruby saves order information in hashes
	Experiment 5: Iterating over elements inserted into a Hash
	Alternate theories: Hashes in JRuby
	Alternate theories: Hashes in Rubinius
	Conclusion
	Appendix - Experiment Code
	Experiment 1
	Experiments 2 and 3
	Experiment 4

